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NATIONAL AERCNAUTICS AND SPACE ADMINISTRATION

TECHNICAL TRANSLATION F-58

UNSTEADY MOTION OF A WING OF FINITE SPAN
IN A COMPRESSIBLE MEDIUM®

By E. A. Krasilshchikova

Under consideration is the turbulent motion of a compressible fluid
caused by the unsteady movement of a thin wing of finite span, moving
according to a given law (refs. 1 and 2).

For the solution of the boundary problems the method which we
developed earlier in connection with our investigation of plane parallel
unsteady movements of a fluid (ref. 3) is used.

The article gives the solution of the problem in quadratures for
all forms of unsteady movement of a wing, in the case when the basic
velocity of the wing's movement is supersonic, and when the end effect
or the influence of the whirl system spreading behind the wing is not
affecting the wing's surface.

1. We shall consider the movement of a thin, slightly bent wing of
finite span with a small angle of attack.

We shall assume that the basic movement of the wing is a gradual
rectilinear movement with a generally variable velocity taking place
within an unlimited volume of compressible fluid coming to rest at
infinity. ILet us impose on the basic movement of the wing additional
small unsteady movements in the course of which the surface of the wing
can be deformed.

We shall use a right-handed rectilinear coordinate system of
Oxyz-afes, invariably linked to the space in which the wing's movement
is taking place. We aim the Ox-axis in the direction of the wing's move-
ment arfd we place the xOy-plane in such a way that the z-coordinates
of the points of the wing's surface are small. (See figs. 1 and 2.)

The law of the wing's basic movement will be considered to be
given in the form

x = F(t) (1.1)

*Translated from Izvestiya Akademii Nauk, Otdelenie Tekhnicheskikh
Nauk SSSR (Moscow), no. 3, Mar. 1958, pp. 25-32.



where F 1s an arbitrary continuous function of time, and where the
x-coordinate, for purposes of definiteness, will be the coordinate of
some fixed point C on the leading edge of the wing.

The normal velocity component on both sices of the wing's surface
wlll be subject to the law

op = A (1.2)
where A is a point-time function on the wing's surface defined by
A=hg+ Ay (Ao = -F'(t)B) (1.3)

The functions B (the angle of attack of the elements of the wing)
and A are given at every point of the wing's surface. These are small
arbitrary integrable functions of their arguments. The first summand
in the expression for A represents the basic movement of the wing;
the second represents additional unsteady movements.

We shall assume the flow of the fluid to be irrotational and to
take place in the absence of external forces. The veloclty potential ¢
of the perturbed flow of the fluid and its de:iivatives wlll be considered
as small magnitudes of the first order, and snall magnitudes of the
second order will be disregarded. Under these assumptions, as it is
known, the velocity potentlial satisfies the wave equation, which, in
fixed coordinate axes, has the form

1
Py * Oyy + Ppy = " Prqy = O (1.4)

where a 1is the velocity of sound in an unpe:turbed medium.

We shall establish the boundary conditions satisfiled by the func-
tion @ and by its derivatives. We will shir't the boundary conditions

on the wing's surface parallel to the Oz-axis onto the projection E:
of the wing on the fixed xOy-plane, which is equivalent to ignoring
small magnitudes of the second order. Thus on the basis of the given
law (eq. 1.2)) for the normal velocity components of the points of the
wing's surface, we get the streamlining, or downwash, condition®

"NASA reviewer's note: The downwash, and hence the source strength,
is assumed to be known on the wing surface and in unperturbed areas;
when needed elsewhere, however, it must be determined by solutions to
integral equatlons. No new solutions are derived from the formal
treatment.

@\ =



o\ =

®, = Alx,y,t) (1.5)

which must be fulfilled on both the upper and lower sides of E:.

From the surface of the wing, in the direction opposite to its
movement, there descends a vortex surface, known as the vortex sheet,
on which the velocity potential, as on the wing's surface itself, is

subject to a break in continuity. The projection 2:1 of the vortex

sheet on the xOy-plane is a semistrip extending from the trailing edge
of the wing in the direction opposite to the Ox-axis. On the whirl
surface the kinematic condition expressing the continuity of the normsal
velocity component of the fluid's particle must be satisfied, and also
the dynamic condition expressing the continuity of pressure must be
satisfied. Since on the vortex surface the direction of the normal
deviates little from the direction of the Oz -axis, we will also shift
the boundary conditions parallel to the Oz-axis onto the projection of
the vortex surface on the xOy-plane, which again amounts to disregarding
small magnitudes of the second order.

From the continuity of pressure, it results that in the region E:l
the derivative function

9 =0 (1.6)

It follows from the same conditions that everywhere in the xOy-plane,

but outside the regions 2: and E:l’ where the medium is perturbed, the
velocity potential is equal to zero

q) =0 (1'7)

If the velocity of the wing's basic movement is supersonic, that
is, F'(t) > a, then the medium is perturbed only in that part of the
space which is restricted by Mach wave. Outside this wave, in the
xOy-plane, the condition

9, =0 (1.8)

must also be satisfied. In addition to this, the Chaplypin-Zhukovski
principle must be observed on the trailing edge of the wing at every
moment. Thus, the boundary problem consists of finding a function
?(%,¥,2z,t) that satisfies equation (1.4), the boundary conditions
(1.5), (1.6), (1.7), (1.8), and the following conditions pertaining to
its derivatives:



lim @, = lim @, = lim @, = 0 where r = \/;2 +y° + 2% (1.9)
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It is sufficient to solve the problem for the upper half-space of
the wing's movement. The velocity potential for the lower half-space
will be found from the condition

CP(X)Y) -z,t) = '(D(X)Y)Z)t) (1.10)

since the function @ 1is an odd function relative to the z-coordinate,
when the movement of the wing is rectilinear.

2.  We shall consider the solutions (ref. 5, chs. 1 and 3)

£(&,1, 1)
o(x,y,2,t) = = ; . = (2.1)
Vix - )2 - ¥2(y - 1)2 - 1222
2 up(x - &)
k=l o1 rog -2 —2 x - 6) - Koy - )7 - k%P
2 2 _ 2 2 _ 2 y -
a Ul - 8 U.l - a
(2.2)
of the equation
2 2 _ _ a2 -
(ul - a )lex a2¢lyy 8Py, * Oppq + 2P = O (2.3)

where f 1s an arbitrary function of its ar;zuments. The magnitude wu,
is an arbitrary parameter of equation (2.3). Formula (2.1) shows that

the variables &, 1, and 71 satisfy the eqiation
2 2
(u12 - a2) (t - 7)2 +{x -8+ (y-7)" + z° - 2uy(x - £)(t - 7) =0
(2.4)

Equation (2.4) is the equation of the sirface, which can be
obtained as the intersection of the characte -istic surface

(12 -6%) (b -2+ (-2 + (y -7+ (o - O - 2u(x - &)t - 7) = 0

(2.5)
of equation (2.3) with the hyperplane ¢ = O.
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We shall place at all points M(&,n) of the plane xOy sources with
potentials of the form (2.1). Because of the linearity of equation (2.3),
its solution is a function expressed by the formula

f T
@l(XJY)ZJt) = LZ]D (gln, ) dn dg (2.6)
2 2 2 2.2
Seo Vz;i‘ e)" -k (y - n)° - k"2
By making the following change of variable:
n=y - %V(X - 5)2 - k222 cos 8 (2.7)

we transform the integral (2.6), taking into consideration solu-
tions (2.2), into the form

Ql(X;Y:Z,t) = % k[]ﬁf E(y - %V(X - 5)2 - k%2° cos 8)
Seo

u12 - 8,2 ul - a

uy(x - ¢)
(t - v —= Qﬁx - )% - k%2° sin 8)) a0 at
(2.8)
We note that in the area of integration S, which represents, gener-

ally speaking, the entire xOy-plane, a bi-connected region S' can always
be singled out, so that the variables of integration vary between the

limits c¢' S8 $x - kz and x +kz S¢ Sc™; (y - k-lvzx - 5)2 - k2z2)

<Sn<y+kl- V(X - 5)2 - ¥°2° or 0 <6 $n, where c¢' and c"
are constant magnitudes, satisfying the inegualities c¢' > x + Kz,
respectively. In the remaining part 5, - S' of the region S,, the limits

of integration will elther not depend on 2z gt all, or will depend on
z only in the combination k22,

If we differentiate equation (2.8) with respect to the parameter =z,
and consider the value of this derivative when z = 0, we will obtain
the relation (ref. 5):

f(XJY)t) @lZ(XJY)OJt) (2-9)

- -1
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Thus for any value of time t, formula (2.6) establishes the
dependence between the function P at an arbitrary point of the

xyz-space and the derivative @,,, normal t3 the x0y-plane.

In particular, in solution (2.6), if tie parameter u, 1is assumed

to be equal to zero, and the notation l@l(x,y,z t)l —O = o(x,y,z,t)

is introduced, we shall have the solution of eguation (l 4} in the form
(refs. 5 and 6)

w{', ,0,t - aH(x - 6)7 + (y - 0)° zg}
%; g&r - 1657 a Vk;f + (y n +

CD(X,y,Z,t) = - dn di§
V .12 2 2
(x -8)"+(y -1 +z
(2.10)
where the variables of integration vary between the limits -« S E S+ o
and -o =7 S + w.
3. We shall consider the space of the variables x, y, and t. We

break up the xyt-space into the regions V, V5, and Vp (see fig. 3). We
shall define each of these regions as in reference 4.

We shall take, on the surface of the wing, an arbitrary point N
defined by the coordinates X1 and Yin in a mobile coordinate system

Ox1y121, which 1s invariably related to the moving wing, where

Xy = X - F(t), Y1 =3 %%
(See figs. 1 and 2.) Let the curve NN' represent the law of movement
x = F(t) + x5, ¥ =g

of the point N (fig. 3). At every point of this curve the streamlining
condition is fulfilled. The aggregate of curves representing the laws
of movement of the whole set of points of the wing's surface forms a
three~-dimensional region V. The region V is bounded by the surface

2:*. The surface 2:* is the locus of the curves representing the law
of movement of the wing's contour points.

Let the curve ACBD, which forms the wing's contour (fig. 2) in a
mobile coordinate system, be given by the equation
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y1 = ¥(x1) (5-1)

*
Then the equation of the surface 2: will have the form

y = 1fx - F®)] - ¢ (x0) (5.2)

In the region V the derivative ¢, 1s given according to the

streamlining condition (1.5).

*
The region Vy is partly bounded by the surface §: , which is formed

by the curves representing the laws of movement of the points on the
trailing edge of the wing, the arc ABD of the wing's contour, and by

¥*
two planes which are tangent to the surface E: along the curves AA'

and BB'. The curves AA' and BB', respectively, represent the laws of
movement of the points A and B, that is, the extreme left and extreme
right points of the wing's contour (fig. 3). The tangent planes are
not represented in the diagram.

In the region Vy, the boundary condition (1.6) is satisfied.

The reglon V, is the remaining part of the xyt-space, confined in
g 2

the interior of the region V + V,. In the region V, the condition (1.7)
is satisfied.

In figure 2, the plane region z: represents the projection of the
wing on the xOy-plane, at some instant of time ty (fig. 3). The
region 2:1 is the projection of the vortex sheet on the xOy-plane at the

same instant of time ti- The plane region 2:1 and, consequently, also

the region Vl extend to infinity, provided the movement is of unlimited

duration. If the movement starts from rest, then these reglons are
bounded.

Represented in figure 4 are the plane regions E:', z:', and E:',
1 2

obtalned from the intersection of the xOt-plane with the V-, Vl—, Vg—planes,

respectively. The curve CC' represents the law of movement of the point C
of the wing's contour in the xOt-plane, and the curve DD' represents the
law of movement of the point D of the wing's contour. The equation of

the curve DD' is



x = F(t) -1
where 1 dis a chord of the center plane.

In the investigation of various boundary problem variants, an
important part is played by conics defined b;r equation (3.3):

(x-t) 4 (y-m" -a(t-n"=0 (5. 3)

This family of conics (3.3) can be obtained by intersecting the char-
acteristic surfaces of equation (l.h) with the hyperplane €& = 0 when

z = 0. The tangent of the half angle at the vertex of these conics is
equal to the velocity of sound, that is, the propagation velocity of
small perturbations in the compressible medium. The branches of the
family of conics (3.3) corresponding to the walues T >t will be called,
for brevity's sake, Q-conics (fig. 5).

The bending surface of the family of Q-conics with vertices on the

¥*
surface E: is a boundary of the region in the xyt-space, corresponding
to the perturbed state of the medium in the xOy-plane of the wing's
movement.

The family of Q-conics performs the same function as the family of
straight lines Xj and X5, given in the constuction of solutions for

plane problems (ref. 3, p. 28) by the equations
E + arv =C
g—aT:C2
respectively.

The dotted lines in figure 4 represent :he straight lines which
are the lines of intersection of the {-conic; with the xOt-plane.

We shall apply solution (2.10) to the brundary problem, and deter-
mine the derivative P, from the boundary conditions of the problem,

given in the xyt-space. We shall introduce in the integral (2.10) the
element dS of the surface of the hyperboloid defined by the equation

2

(x - ) + (y - )° + 22 - &2t - 7)2

=0 (3.4)

which is satisfied by the variables §&,n and

T =1t - a'lVZx - &)2 + (y - n)2 + 2@

o\ =
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under the sign of the function @,. By introducing the element

as = \BG - Fy dn de

(E, G, and Fy being the coefficients in the first main guadratic
form), we shall represent solution (2.10) in the form

ds

5,0, - a~l \[(x - &)2 - n)° 22)
s(x,¥,z,t) \Kl ra?)(x - £)%+ (1 + 8%y - ) + a2

(3.5)%

where we integrate over the surface S. Surface S is the surface of the
branch of the hyperboloid (3.4), extending to infinity in the direction
of decreasing values of time. Integration along the branch of the hyper-
boloid extending in the direction of increasing values of time has no
physical meaning.

To every aggregate of variables X, y, z, and t there corresponds
a surface S with vertex at the point P(x,y,t - (z/a)), represented in
figure 3.

In those cases where the surface S intersects only the region V
and that part of the xyt-space which corresponds to the unperturbed
state of the medium in the xOy-plane, the derivative ?, is known every-
where on the surface. In order for formula (3.5) to correspond to the
solution of the formulated problem, the derivative ¢, must be taken

from the boundary conditions (1.5) and (1.8) without resorting to the
construction of integral equations.

In the general case when the set of variables x, y, 2, and t 1is
arbitrary, the surface S intersects the regions V, V,, and V2, and con-

sequently, the derivative @ turns out to be unknown on a part of
surface S. In order for formula (3.5) to correspond to the solution of
the formulated problem, the unknown derivative ¢, must be found from
the integral equations constructed on the basis of the boundary condi-
tions (1.6) and (1.7).

It is convenient in the actual computation of the quadratures and
in the construction of the integral equations to pass from the surface
integral (3.5) to a double integral with a plane area of integration.

*NASA reviewer's note: Equation (3.5) and, consequently, the
expression for dS on page 11, as well as equation (3.6), appear to
be incorrectly given.
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The region Sy is a part of the xOt-plane, which is bounded on the
1

right by the hyperbola a°(t - T)2 - (x - g)2 - 22 =0 (see fig. k).
If condition (5.9) holds, then the left boundary of the region S; is
the curve which 1is the proJjection on the xOt-plane of the line of inter-

*
section of the surface ) with the surface of the hyperboloid S, in

that part where the current coordinate n < y. Analogously, the region
So> is determined as that region in the xOt-plsne which corresponds to

that part of the surface of the hyperboloid S where 1 > y.

If in formula (3.11), the derivative 9, 1s considered a function

of two variables ¢ and 71, we shall get a fcrmula (ref. 3,
formula (1.10)) for the determination of the velocity potential in the
case when the wing 1s of infinite span.

In particular, the curve forming the wing's contour can consist of
segments of smooth curves; for example, it can be plecewise smooth.

In particular, the curve which describes the law of the wing's
movement can be given not by one equation x = F(t), but can consist of
segments of smooth curves given by various equations. The main velocity
of the wing's movement can vary stepwise; that is, the derivative F'
can have discontinuities of the first type, wkich correspond to the
angular points on the curves describing the lsws of movement of the wing's
points. The envelope of the {i-conics with vertices at the angular points
corresponding to the same instant of time divides the xyt-space into
regions having various analytic modes of solution of the problem. The
envelope of the (-conics with vertices at the points on the curves which
represent the laws of movement of angular points, or the points of junc-
tion of the wing's contour, divides the xyt-space into regions having
various analytic solutions of the problem.

In particular, in the process of the wing's movement, the charac-
ter of the additional unsteady movements of the wing can vary in such
a way that the points of the wing's surface cen be included as separate
degrees of freedom in the additional movements; steady movements may
alternate with unsteady ones, etc. In all these cases, from the point
of view of the form of the given function A(x,y,t) *he region V is
divided by the given surfaces into a series of regions.

For instance, let the wing move according to the law x = F(t)

and let there be no additional movements; that is, on the wing's surface
the derivative

®, = F'(t)ﬁ(x:}’)t) =k

o\ =
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We shall assume that at the instant of time tg @all points of the wing's

surface begin to effect harmonic fluctuations of the wing. Starting
from the instant of time tg, on the wing's surface

¢, = -F'(£)B(x,5,t) + ReA1(x,y,t)exp iwt = A

The plane region Ag, Dg, By, Co is obtained as the result of the
intersection of the region V with the plane T = tp which divides the
region V into two parts, namely, when

T<t01 CPZZK
and when

'T>t0, q)z'—’z:

Llet the wing move according to the law x = F(t). We will assume
that starting from the instant of time to, the points of the wing's
surface are progressively included in the additional fluctuating move-
ments with the relative velocity v(t) directed along the chord of the
wing in the direction of its movement. The surface given by the equation

e = L/;T[F'(T) + V(T)]dT + constant = f(T)

also divides the region V into two parts. One part is to the left of
this surface, where P, = A, the other i1s to the right of this surface

where @, = E (fig. 7).

The curve A, Dy, By, Cy 1s obtained by intersecting the surface

E:* with the surface given by the equation & = f(7).

The results also retain force when in the process of the wing's
movement the area of the carrier surface changes to a finite magnitude,

¥*
which is reflected in the form of the given boundary }: of the region V

(ref. 3, p. 35). This may be the case in the operation of some form of
mechanization of the wing. In the process of the actual computation

of quadratures in accordance with formula (3.5), the region of integra-
tion S5 must be split into component parts, depending on the form of
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the given derivative ¢, 1n the region V, and depending on the form of

the surface E:*, whose separate parts can be given by various equatiomns.

Translated by Consultants Custom Translations, Inc.,
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Figure 4.
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Figure 5.
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Mach wave Mach wave

Figure T..
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